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Relating Curvature to the Real World
Recall the mantra for the class:

"Space acts on matter, telling it how to move.
In turn, matter reacts back on space telling it how to curve"

-- John A. Wheeler

The Physical Effects of Curvature
As I have said many times in this class, we cannot directly visualize the curvature of the space
we are in.  There is another way of saying this--we cannot make any measurements of the
curvature of spacetime that in any way feels like a measurement of curvature.  Now of course by
feeling gravity we are measuring the curvature of spacetime all the time, but it does not look like
curvature.  The physicist has the same problem.  What physical quantities that are related to
curvature are the most convenient for the physicist to measure?

The most physical effect of curvature is to observe the paths of objects as they move in the
straightest possible line in a curved spacetime.  Recall the spacetime diagrams from the second
class.  The straightest lines on those diagrams were actual straight lines, because in the second
class we were talking about a flat spacetime.  Let’s imagine a little toy example which will help
us imagine curved spactime.  This is not a physical example, but it will introduce the concepts
we need.

Imagine a spacetime diagram on a sphere, with the space axis on the equator of the sphere.
Consider two objects, not moving relative to each other and starting at two different locations on
the space axis (on the equator, at the “now” moment of time).  The world lines of these objects
will, of course, point in the time direction of this spacetime diagram on a sphere, which is
pointing towards the north pole.  Because, in this example, our spacetime is two dimensional and
is on the surface of the sphere, the world lines of the objects will also stay on the surface of the
sphere.  But because the objects are not moving their world lines always point in the time
direction (of this spacetime diagram), which is towards the north pole.  Therefore the world lines
will be great circles from the equator to the north pole.  At later times the objects will be closer
together, so it will appear to each object that there is a force pulling the objects together.  This is
exactly like the ants on the apple story of the first class, but with a simpler geometry.
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From this example we can see where the “motion” in the phrase “moving along the straightest
line” comes from: it is the motion forward in the time direction of spacetime that we always
experience and cannot stop.

(You can imagine doing this yourself in space (not spacetime) if you imagine you and a friend
walking to the north pole of the Earth.  No matter how far apart you start, so long as you start at
the same latitude, you will eventually find yourselves moving closer and closer together, even
though you are both walking towards the north pole.  Remember: it doesn’t matter how heavy
you are or how you are traveling, you will both follow the same path from the same starting
point (like gravity) and you will move closer together even though you don’t feel a force pulling
you together (like gravity)!)

The above example was of a two-dimensional spacetime on the surface of a sphere.  Real
spacetime is four-dimensional, so the actual curvature is typically much more complex.  In flat
spacetime we used the fact that all the space directions are the same (because spacetime in this
case was flat in all directions) to reduce our picture to a two-dimensional spacetime diagram.
We cannot typically do this when spacetime is curved, however, because it can (and usually is)
curved differently in different directions.

Therefore to visualize spacetime we usually look at the straightest lines, or geodesics, and watch
how things that move along geodesics change their distances from each other.  After all, if two
objects are moving closer to or further from each other, then they are moving relative to each
other.  If the objects started out with no relative motion (like the objects at the equator in the
sphere spacetime example above) and then after time passes the objects are closer together, then
it will seem that they developed a relative motion over time.  In other words, from the point of
view of the objects, they were accelerated.  This is why curved spacetime looks to us like it
causes the acceleration of objects, which is the primary physical effect of gravity.

This is how “space acts on matter, telling it how to move”.

How to Determine the Curvature
The second part of our mantra is “matter reacts back on space telling it how to curve”.  Physicists
determine the curvature of some region of spacetime by first looking at how matter is distributed
in that region.  But before we can get some idea of how physicists determine curvature we should
say a little bit about how they describe curvature.

There are many ways to perceive and measure curvature.  The ways you would intuitively
measure curvature requires you to stand “outside” and say how much the surface is curved.  But
we cannot stand outside of spacetime, so we need a way to describe curvature inside spacetime.
Physicists use a description that is closely related to the idea of geodesics, which is the idea of
the “shortest distance between points”.  The technical description of the shortest distance
between points is called the metric.  You are familiar with the metric formula in flat space: it is
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just the Pythagorean theorem (that for a right triangle, the square of the hypotenuse is the sum of
the squares of the two sides).

Let’s compare the shortest distance between two points on a plane and two points on a sphere.
On a plane the shortest distance is, of course, the length of the straight line between the two
points.  The shortest distance between two points on a sphere is the length of the great circle
connecting the two points.  Now think for a moment about the three-dimensional space
containing both the plane and the sphere.  Then the distance in three-dimensional space between
the points on the sphere is given by the length of the straight line between the points (in 3D).
Similarly the distance in three-dimensional space between the points on the plane is given by the
length of the straight line between the points, which is the same line in 2D and 3D.  Let’s assume
that the 3D distance between the points is the same for both the sphere and the plane.  Now here
is the important observation: notice that the distance between the points measured on the sphere
is greater than the distance between the points on the plane.  Therefore we can use the distance
between points to measure curvature.

The formula for the distance between points in a curved space is called the metric.  The curvature
tensor (called R in the notes from the first session) is completely determined by the metric.  Also
the formula for a geodesic is expressed entirely in terms of the metric.  When a physicist solves
for the curvature given a distribution of matter, what is really happening is the solution is for the
metric, when the formula for R in terms of the metric is substituted into Einstein’s equations.
We then try to find a metric that satisfies that equation for the given distribution of matter.  The
resulting formulas are very complicated and difficult to solve.

Actually, the equations of gravitation are never (to my knowledge) actually solved this way.  It is
simply too difficult a problem to try to exactly match a specified distribution of matter with the
correct metric.  What physicists actually do is make simplifying assumptions about the
distribution of matter.  In particular they may specify that the matter takes, for example, the form
of a rotating sphere that does not change with time (this particular assumption leads you to what
is known as the Kerr solution).  This kind of the assumption greatly limits the possible
mathematical forms that the distance element may take and so makes the finding of the correct
distance element easier.

Let me describe a real life example.  This is the solution for a distribution of matter that is a non-
rotating, non-changing sphere.  In this case, the matter looks the same from every direction.
Because the sphere is the same from every direction, only the distance from the sphere matters.
It turns out that this implies that the space around this sphere is only curved in the spatial
direction pointed towards the center of the sphere and in the time direction.  Therefore at a point
in spacetime near the sphere one can choose your coordinate axes so that there is no curvature in
two of the spatial directions.  This makes it much easier to solve for the metric in this case.

This is a very useful example because it is a good approximate model for the distribution of
matter in a star.  Stars are approximately spherical, and they rotate and change shape very
slowly.  Therefore the metric in this simple example will describe the space around a star.  This
is called the Schwarzschild solution.  Physicists use the Schwarzschild metric to calculate the
straightest lines in the space around the sun.  Sure enough, the straightest line followed by an



Riding the Curvatures of Spacetime, session 4 4
Instructor: Steve Bryson

object initially at rest relative to the sphere will follow a parabolic path (in spacetime) towards
the center of the sphere.

Spacetime diagram of curved spacetime around a star in the time – space directions, where the space
direction is the direction towards the center of the star.

Also, the straightest line pointed in certain directions in the curved space around the star form
almost closed ellipses!  This is the path followed by the Earth in its orbit around the sun.  Again,
the Earth is following the closest thing there is to a straight line in the space curved by the sun.
Therefore the Earth in it's orbit is testing General relativity all of the time!

Of course Newton’s theory of gravity also predicts that the Earth will orbit the sun in an ellipse.
It is important to find examples where Einstein’s theory makes predictions that are measurably
different from Newton’s theory.  There are other tests of general relativity that are more
interesting because they predict things that were not previously understood.  One of them is the
motion of the planet Mercury around the sun.  I mentioned above that the straight lines that form
orbits are almost closed ellipses.  This is simply how it works out in this curved space.
According to the Newtonian theory of gravity, orbits form really closed ellipses.  It was observed
for many years before the advent of general relativity that Mercury's orbit does not form a closed
ellipse in a way that could not be explained by the gravitational influence of the other planets
(according to Newtonian gravity).  General relativity, however, exactly predicts the observed
lack of closure in Mercury's orbit.

The other two classical tests of general relativity involve how light is effected by gravity.
According to Newtonian gravity, if light is a particle with an effective mass generated by the
energy of the light (remember that according to special relativity energy has an equivalent
amount of mass (E=mc2)) then gravity should effect light in a certain way.  According to general
relativity light (like everything else) simply moves along straight lines in a curved space and so
will be effected by gravity in a way that disagrees with Newtonian gravity.  When you measure
the effects, general relativity gives the correct prediction.

time

space

Object initially at rest at t=0

World line of object
= straightest line in spacetime in
this direction

World line of star



Riding the Curvatures of Spacetime, session 4 5
Instructor: Steve Bryson

When the sphere of matter is rotating, the curvature of the spacetime around the sphere is a little
more complicated.  In this case there is a curvature in the direction of the rotation, which has the
effect that geodesics of objects that are initially at rest with respect to the sphere will be pulled
slightly in the direction of rotation, rather than falling directly towards the center of the sphere.
This effect is very small and very hard to measure for the Earth’s spacetime curvature.
Stanford’s gravity probe B experiment will attempt to measure this effect with a satellite in orbit.
Because the effect is so small the gravity probe B experiment will try to accumulate the effect
over time.

Visualizing the Schwarzschild Geometry: Black Holes
Recall the spacetime diagrams from when we were talking about special relativity.  Light plays a
very special role in spacetime, in that the speed of light is always the same no matter what your
point of view.  In particular, even if you are moving relative to me we will both measure a light
beam to be travelling with the same speed.

Put in spacetime diagram terms, this means that the tilt of light's world line will be the same no
matter what point of view in spacetime we take.  Like in the second session, we can manipulate
our units of measurement so that on our diagram this tilt is that of a line at 45 degrees.  Let us
agree to do this, so that our spacetime diagram looks like this:

We call the two lines representing the world lines of light beams going opposite directions the
light cone.  The light cone from the center will always look the same in any point of view.  If,
however, you were to look at the light cone at a point away from your center in a curved space
then that light cone may be tilted.  Here is a drawing of the light cone structure of the spacetime
around a star according to the Schwarzschild solution:
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The effect of the curvature on the light cone is to cause the entire light cone to tilt (from the point
of view that we take far away from the star) towards the star.  This helps us to visualize the
curvature around the star.

It is only the surface of the star that stops the light cone from turning over completely.  One can
therefore ask what would happen if the star became smaller and smaller.  Then the space close to
the surface of the star would become more and more curved and the light cones would tilt more
and more over.  When the star reaches a small enough radius (3 kilometers in the case of the sun)
the light cone at it's surface has tilted completely over (remember that this is from our point of
view far away from the star).  This special radius is called the Schwarzschild radius.  Here it is
visually:
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If the star is smaller than it's Schwarzschild radius, then the space at the surface is so curved over
that the entire interior of the light cone is pointed at the star!  Now as nothing can ever travel to a
point in spacetime outside of it's own light cone, this means that any object starting from a point
inside the Schwarzschild radius will find the surface of the star in it's future no matter how it
moves!  Another way of saying this is that for someone inside the Schwarzschild radius of a star
all paths move towards the star.  Even to stay at the same distance from the star would require
our unfortunate friend to travel outside his own light cone.  This would require him to travel
faster than light, which you cannot do due to the structure of spacetime.

So anything that falls closer to the center of a star than it's Schwarzschild radius will necessarily
eventually hit the star--including light.  Any object that becomes smaller than it's own
Schwarzschild radius is called a black hole.  It need not have started as a star, but stars are the
only objects in nature that we know of that can shrink to a size small enough to become a black
hole.

I should mention that there is no Schwarzschild radius inside a star, for the matter inside the star
keeps the curvature there well behaved.

What is the experience of passing through the Schwarzschild radius of a star?  It is nothing
special at all.  For the person falling into the star, there is no Schwarzschild radius.  This is
because this person always carries his own point of view and in his point of view his light cone
always points up.  The Schwarzschild radius is only a feature of the comparison between the
point of view that we have far from the star and the point of view near the star.  This is not just a
simple comparison, for it has very physical effects.  One effect of very large curvature near a star
is that time runs slower near a star than farther away.  Thus if you traveled very near (but not
through!) the Schwarzschild radius of a black hole and returned I would have aged much more
than you would have.  In fact, if I watched you approach the black hole, I would see your time
slow down more and more as you got closer and closer to the Schwarzschild radius.  You, on the
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other hand, would think that nothing particularly strange was happening to yourself, but you
would see the rest of the universe speeding up.

What if you let yourself fall through?  As I mentioned before, you would fall through the
Schwarzschild radius and very quickly (much less than one second after you passed through the
Schwarzschild radius) hit whatever it is in the center.  I, however, am sitting at the safety of a
great distance and would see you slowing down more and more as you approached the
Schwarzschild radius.  In fact, I would never see you pass through the Schwarzschild radius.
Due to the curvature of the space made by the star it would take an infinite amount of my time
for you to reach the Schwarzschild radius.  In my way of measuring time you would never get
there.  Yet in your way of measuring time you get there rather quickly.  Thus we live in a
universe where something can happen to someone which never happens at all as far as someone
else is concerned.  I consider it a good thing that you could never come out of the black hole
again and confront me with an event that, as far as I am concerned, has not yet happened.

Once something is inside the Schwarzschild radius of a black hole, it can never get out.  This
means that someone inside the Schwarzschild radius can never send anything out to the outside
universe.  Thus we, sitting off in the distance, can never receive any message from within the
Schwarzschild radius.  In particular, we can never receive any information about the black hole
itself.  This is why John Wheeler coined the term 'black hole' for this kind of object.  This radius
is also known as the event horizon.  As we can not receive any messages from within the black
hole, we cannot know the particular structure of the hole.  The only things that we can know
about the objects inside the Schwarzschild radius are the mass, electromagnetic charge, and total
amount of rotation in the matter, as all of these things contribute to the spacetime curvature
around the object.  Further, as the world lines of all objects inside the Schwarzschild radius
eventually hit the surface of the star, one can show that the matter inside the black hole must take
a spherical shape.  This is called the "Black holes have no hair theorem" and was first proved by
Stephen Hawking and Roger Penrose.

Hawking and Penrose were the main researchers who studied the overall properties of the
curvature of spacetime, introducing very pretty and abstract mathematical geometric techniques.
They proved several so-called singularity theorems, which say that under very general and
physically likely circumstances spacetime will curve in such a way that all of the dimensions of
spacetime will be squished down to a point.  Such a point is called a singularity.  Some of the
singularity theorems refer specifically to black holes and imply that once a star has become
smaller than it's own Schwarzschild radius, then it must inevitably collapse to a point taking it's
surrounding spacetime with it.  This is something that physicists do not like, as it implies that
there are points in spacetime where the structure of space somehow breaks down.  It is generally
assumed, but by no means known, that when the black hole becomes small enough general
relativity breaks down and is no longer true due to quantum mechanical effects.   Thus as the
black hole becomes small enough general relativity no longer applies and as no one knows what
does apply all bets are off.

It would be very interesting, therefore, to try to observe what happens to a collapsing star inside
it's own Schwarzschild radius.  Now we simply cannot do this because of the nature of the
Schwarzschild curvature.  Other solutions of Einstein's equations, though, do offer the possibility
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of creating spacetime singularities not enclosed by an event horizon (the event horizon is the
generalization of the Schwarzschild radius to these other solutions).  If we are looking at a sphere
of matter that is electrically charged or spinning (or both), then the spacetime curvature around
the star is somewhat more complicated (though not so complicated as to prevent figuring out
these solutions).  These solutions are called the Reisner-Nordstrom solution and the Kerr solution
respectively.  Here if the charge or spin is not too large there is an event horizon surrounding the
black hole, but if the charge or spin are large enough then the events horizons vanish and you
have a singularity of spacetime for your examination.

So if we try to create a highly charged black hole, say by dumping in lots of protons to give the
hole a large positive charge, perhaps we can get a glimpse of the singularity.  The trouble is that
as the hole becomes more and more charged it becomes harder and harder to dump the protons in
due to the electrostatic repulsion of like charges (both the hole and the protons are positively
charged).  It turns out that long before the hole would be charged enough to make the event
horizon vanish it would be effectively impossible to keep dumping protons in.  No one has been
able to invent even a theoretical way to keep dumping protons in.

Similarly, for a spinning black hole the spacetime curvature is such that as objects approach the
black hole they start spinning with the hole (this is called dragging of inertial frames).  Say we
try to make the hole spin faster by throwing things in in such a way as to add to the spin of the
total system.  As the hole spins faster and faster approaching objects get dragged faster and
faster.  Long before the spin of the hole is fast enough to eliminate the event horizon any object
approaching the hole would be flung back out into space by the dragging before it could fall in.

While the above analysis depends on estimates of what we can actually do, the fact that they do
not seem to come even close to canceling the event horizons has led physicists to postulate what
is called 'the cosmic censorship hypothesis':  There are no singularities in the universe that are
not surrounded by event horizons.  In other words, there are no naked singularities.  At this point
in time, despite large effort by very good physicists, this is still a hypothesis.  No one knows if it
is true or false and it remains one of the most important outstanding problems in general
relativity.


